Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts

نویسندگان

  • Kamil S. Sitarz
  • Hannah R. Elliott
  • Betül S. Karaman
  • Caroline Relton
  • Patrick F. Chinnery
  • Rita Horvath
چکیده

Valproic acid (VPA) is a widely used antiepileptic drug and also prescribed to treat migraine, chronic headache and bipolar disorder. Although it is usually well tolerated, a severe hepatotoxic reaction has been repeatedly reported after VPA administration. A profound toxic reaction on administration of VPA has been observed in several patients carrying POLG mutations, and heterozygous genetic variation in POLG has been strongly associated with VPA-induced liver toxicity. Here we studied the effect of VPA in fibroblasts of five patients carrying pathogenic mutations in the POLG gene. VPA administration caused a significant increase in the expression of POLG and several regulators of mitochondrial biogenesis. It was further supported by elevated mtDNA copy numbers. The effect of VPA on mitochondrial biogenesis was observed in both control and patient cell lines, but the capacity of mutant POLG to increase the expression of mitochondrial genes and to increase mtDNA copy numbers was less effective. No evidence of substantive differences in DNA methylation across the genome was observed between POLG mutated patients and controls. Given the marked perturbation of gene expression observed in the cell lines studied, we conclude that altered DNA methylation is unlikely to make a major contribution to POLG-mediated VPA toxicity. Our data provide experimental evidence that VPA triggers increased mitochondrial biogenesis by altering the expression of several mitochondrial genes; however, the capacity of POLG-deficient liver cells to address the increased metabolic rate caused by VPA administration is significantly impaired.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome

BACKGROUND DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of...

متن کامل

Global Identification of Myc Target Genes Reveals Its Direct Role in Mitochondrial Biogenesis and Its E-Box Usage In Vivo

The Myc oncoprotein is a transcription factor involved in a variety of human cancers. Overexpression of Myc is associated with malignant transformation. In normal cells, Myc is induced by mitotic signals, and in turn, it regulates the expression of downstream target genes. Although diverse roles of Myc have been predicted from many previous studies, detailed functions of Myc targets are still u...

متن کامل

Dysregulation of Mitochondrial Quality Control Processes Contribute to Sarcopenia in a Mouse Model of Premature Aging

Mitochondrial DNA (mtDNA) mutations lead to decrements in mitochondrial function and accelerated rates of these mutations has been linked to skeletal muscle loss (sarcopenia). The purpose of this study was to investigate the effect of mtDNA mutations on mitochondrial quality control processes in skeletal muscle from animals (young; 3-6 months and older; 8-15 months) expressing a proofreading-de...

متن کامل

Upregulation of Mitochondrial Content in Cytochrome c Oxidase Deficient Fibroblasts

Cytochrome-c-oxidase (COX) deficiency is a frequent cause of mitochondrial disease and is associated with a wide spectrum of clinical phenotypes. We studied mitochondrial function and biogenesis in fibroblasts derived from the Cohen (CDs) rat, an animal model of COX deficiency. COX activity in CDs-fibroblasts was 50% reduced compared to control rat fibroblasts (P<0.01). ROS-production in CDs fi...

متن کامل

Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency.

Carnitine palmitoyltransferase-2 (CPT2) is a mitochondrial enzyme involved in long-chain fatty acid entry into mitochondria for their β-oxidation and energy production. Two phenotypes are associated with the extremely reduced CPT2 activity in genetically deficient patients: neonatal lethality or, in milder forms, myopathy. Resveratrol (RSV) is a phytophenol produced by grape plant in response t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2014